2,108 research outputs found

    Effects of semiclassical spiral fluctuations on hole dynamics

    Full text link
    We investigate the dynamics of a single hole coupled to the spiral fluctuations related to the magnetic ground states of the antiferromagnetic J_1-J_2-J_3 Heisenberg model on a square lattice. Using exact diagonalization on finite size clusters and the self consistent Born approximation in the thermodynamic limit we find, as a general feature, a strong reduction of the quasiparticle weight along the spiral phases of the magnetic phase diagram. For an important region of the Brillouin Zone the hole spectral functions are completely incoherent, whereas at low energies the spectral weight is redistributed on several irregular peaks. We find a characteristic value of the spiral pitch, Q=(0.7,0.7)\pi, for which the available phase space for hole scattering is maximum. We argue that this behavior is due to the non trivial interference of the magnon assisted and the free hopping mechanism for hole motion, characteristic of a hole coupled to semiclassical spiral fluctuations.Comment: 6 pages, 5 figure

    Transport properties of a two impurity system: a theoretical approach

    Full text link
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Spin polaron in the J1-J2 Heisenberg model

    Full text link
    We have studied the validity of the spin polaron picture in the frustrated J1-J2 Heisenberg model. For this purpose, we have computed the hole spectral functions for the Neel, collinear, and disordered phases of this model, by means of the self-consistent Born approximation and Lanczos exact diagonalization on finite-size clusters. We have found that the spin polaron quasiparticle excitation is always well defined for the magnetically ordered Neel and collinear phases, even in the vicinity of the magnetic quantum critical points, where the local magnetization vanishes. As a general feature, the effect of frustration is to increase the amplitude of the multimagnon states that build up the spin polaron wave function, leading to the reduction of the quasiparticle coherence. Based on Lanczos results, we discuss the validity of the spin polaron picture in the disordered phase.Comment: 9 pages, 12 figure

    Hyperpixels: Flexible 4D over-segmentation for dense and sparse light fields

    Get PDF
    4D Light Field (LF) imaging, since it conveys both spatial and angular scene information, can facilitate computer vision tasks and generate immersive experiences for end-users. A key challenge in 4D LF imaging is to flexibly and adaptively represent the included spatio-angular information to facilitate subsequent computer vision applications. Recently, image over-segmentation into homogenous regions with perceptually meaningful information has been exploited to represent 4D LFs. However, existing methods assume densely sampled LFs and do not adequately deal with sparse LFs with large occlusions. Furthermore, the spatio-angular LF cues are not fully exploited in the existing methods. In this paper, the concept of hyperpixels is defined and a flexible, automatic, and adaptive representation for both dense and sparse 4D LFs is proposed. Initially, disparity maps are estimated for all views to enhance over-segmentation accuracy and consistency. Afterwards, a modified weighted K-means clustering using robust spatio-angular features is performed in 4D Euclidean space. Experimental results on several dense and sparse 4D LF datasets show competitive and outperforming performance in terms of over-segmentation accuracy, shape regularity and view consistency against state-of-the-art methods.info:eu-repo/semantics/publishedVersio

    ALFO: Adaptive light field over-segmentation

    Get PDF
    Automatic image over-segmentation into superpixels has attracted increasing attention from researchers to apply it as a pre-processing step for several computer vision applications. In 4D Light Field (LF) imaging, image over-segmentation aims at achieving not only superpixel compactness and accuracy but also cross-view consistency. Due to the high dimensionality of 4D LF images, depth information can be estimated and exploited during the over-segmentation along with spatial and visual appearance features. However, balancing between several hybrid features to generate robust superpixels for different 4D LF images is challenging and not adequately solved in existing solutions. In this paper, an automatic, adaptive, and view-consistent LF over-segmentation method based on normalized LF cues and K-means clustering is proposed. Initially, disparity maps for all LF views are estimated entirely to improve superpixel accuracy and consistency. Afterwards, by using K-means clustering, a 4D LF image is iteratively divided into regular superpixels that adhere to object boundaries and ensure cross-view consistency. Our proposed method can automatically adjust the clustering weights of the various features that characterize each superpixel based on the image content. Quantitative and qualitative results on several 4D LF datasets demonstrate outperforming performance of the proposed method in terms of superpixel accuracy, shape regularity and view consistency when using adaptive clustering weights, compared to the state-of-the-art 4D LF over-segmentation methods.info:eu-repo/semantics/publishedVersio

    View-consistent 4D Light Field style transfer using neural networks and over-segmentation

    Get PDF
    Deep learning has shown promising results in several computer vision applications, such as style transfer applications. Style transfer aims at generating a new image by combining the content of one image with the style and color palette of another image. When applying style transfer to a 4D Light Field (LF) that represents the same scene from different angular perspectives, new challenges and requirements are involved. While the visually appealing quality of the stylized image is an important criterion in 2D images, cross-view consistency is essential in 4D LFs. Moreover, the need for large datasets to train new robust models arises as another challenge due to the limited LF datasets that are currently available. In this paper, a neural style transfer approach is used, along with a robust propagation based on over-segmentation, to stylize 4D LFs. Experimental results show that the proposed solution outperforms the state-of-the-art without any need for training or fine-tuning existing ones while maintaining consistency across LF views.info:eu-repo/semantics/acceptedVersio

    Quisto Pericárdico Gigante a Imitar Dextrocardia na Telerradiografia de Tórax

    Get PDF
    Pericardial cysts are rare benign congenital malformations, usually small, asymptomatic and detected incidentally on chest X-ray as a mass located in the right costophrenic angle. Giant pericardial cysts are very uncommon and produce symptoms by compressing adjacent structures. In this report, the authors present a case of a symptomatic giant pericardial cyst incorrectly diagnosed as dextrocardia on chest X-ray

    Enhancing Transdermal Delivery of Opioid Antagonists and Agonists Using Codrugs Linked To Bupropion or Hydroxybupropion

    Get PDF
    The present invention is directed to novel codrugs comprising bupropion or hydroxybupropion and an opioid antagonist or an opioid agonist joined together by chemical bonding. The codrugs provide a significant increase in the transdermal flux across human skin, as compared to the basic opioid antagonist or opioid agonist
    corecore